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ABSTRACT 
 

SEGMENTATION AND EXTRACTION OF INDIVIDUAL LEAVES FROM PLANT 
IMAGES FOR SPECIES CLASSIFICATION 

 
Dale Garrett Henries 

 
M.S., Appalachian State University 

 
Thesis Chairperson: Rahman Tashakkori 

 
Plant species classification through the examination of images of plant leaves requires 

as input an image of a single leaf with no stems or other non-leaf objects. Images of plants, 

however, usually include more than one leaf, stems, branches, flowers, and other non-leaf 

objects. For such images each individual leaf needs to be extracted into a unique sub-image, 

and these sub-images must be cleaned to remove all non-leaf objects. A target leaf could then 

be selected from the group of sub-images to be provided as the input to the plant species 

classification program. As a part of the research on this thesis, an algorithm was developed to 

automate the tasks of detecting and extracting leaf sub-images from plant images and to clean 

the leaf sub-images by removing all non-leaf objects. To implement the algorithm, software 

was developed in Java. The proposed algorithm produced at least one perfect leaf result in 18 

of the 21 (86%) plant images used in this research, while the remaining three (14%) plant 

images produced acceptable leaves. 
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CHAPTER 1: INTRODUCTION 

A significant amount of research has been devoted to plant species classification 

through the examination of images of leaves. The classification process relies heavily upon 

being able to extract shape related features and measurements of the leaf itself. Photographs 

of plants, however, almost always contain multiple leaves, stems, branches, and background 

objects that interfere with the examination process and must be removed from the image 

prior to species classification. Removal of these interfering parts is most often accomplished 

by researchers manually editing the image. In order for species classification through the 

examination of plant photographs to be more practical, the process of cleaning the leaf image 

should be automated. This would allow applications to be developed where an end-user 

provides a photograph of a plant, and the software determines the species of the plant. 

Complete automation of selecting and extracting a target leaf from a photograph 

requires several steps.  First, the plant must be separated from the background objects in the 

image such as the ground and sky. Next, all leaves within the image should be detected and 

separated into individual sub-images. For each of the leaf sub-images, the objects that are not 

leaves, such as stems and branches, must be removed. Then, any leaves that are partially 

occluded should be discarded as possible targets. Finally, if multiple non-occluded leaves are 

found, one must be selected as the best possible candidate for classification. 

Although a complete automated solution is not out of reach for the near future, this 

research focuses on several of the issues presented while leaving others for future research. 
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Segmentation of the plant from background objects is a challenging task due to the fact that 

background objects often closely resemble the plant in color. Disregarding partially occluded 

leaves is also a challenging problem, because leaves that are from the same plant are often of 

the same color. It can even be a challenge for the human eye to detect where one leaf ends 

and another begins.  For these reasons, this thesis focuses on images which contain no 

partially occluded leaves and where the plant is already segmented from the background. 

Selection of the most suitable target leaf for species classification will require an algorithm 

that provides a quantitative way to rank leaves in order of suitability for analysis. Developing 

such an algorithm is challenging because it must work for many different types of leaves and 

cannot use species specific information in its calculations. For this reason, this thesis will 

provide all of the extracted leaves and will leave the selection of most suitable leaf for future 

research.  

Several approaches for automatic leaf extraction from images have been proposed [1, 

2, 3, 4]; however, all of these techniques make assumptions that severely limit their 

effectiveness in certain situations. For example, some of the proposed approaches [1, 2, 4] 

assume prior knowledge of the shape of the target leaf. Leaves, however, vary drastically in 

shape as different species may have smooth or serrated edges, single or multiple lobes, or 

various other shape differences.  

Another common assumption is that leaves are green [1, 3]. While it is true that most 

leaves are green, many plant species have leaves that are other colors, are multiple colors, or 

even change colors in direct sunlight. Leaves of some species also change color at different 

times of the year. Assuming that leaves are green eliminates unhealthy or dead leaves that 

often become dark or brown. 
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The method in which the target leaf is selected presents a challenge with some of the 

proposed approaches [3, 4]. These studies make an assumption that the target leaf is the 

largest foreground region in the image. The largest leaf, however, may not be the most 

suitable leaf for species classification. For example, if the largest leaf in an image is torn and 

the image contains a smaller complete leaf, the smaller leaf would be better suited for 

classification. In addition to this problem, the algorithm provided by Tang et al. [3] makes 

the assumption that the target leaf is centered in the original photograph. In photographs with 

multiple leaves, a leaf could be present in any part of the image. Requiring the target leaf to 

be in a certain location within the image drastically hinders the potential of the algorithm. 

The existing approaches for automated leaf extraction are not satisfactory for an 

application that allows end-users to provide a plant image. For such an application to be 

feasible, the automated leaf extraction algorithm should handle leaves of various colors, 

shapes, sizes, and locations within the image. In this thesis, an algorithm will be proposed to 

automate the process of extracting the possible target leaves from a plant image.  

The remainder of this thesis is organized as follows. Chapter 2 provides an overview 

of image processing techniques related to this work. Chapter 3 outlines the overall algorithm 

proposed and the algorithms for target leaf extraction, to detect and extract individual leaf 

sub-images, and individual leaf image cleaning, to remove stems and other interfering 

objects. Chapter 4 provides an overview of the software tool that was created in Java to 

implement the proposed algorithms. Chapter 5 presents the results and effectiveness of the 

proposed algorithms. Chapter 6 discusses the outcomes of this study, and provides possible 

future work in this area. 
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CHAPTER 2: IMAGE PROCESSING TECHNIQUES 

2.1 Introduction 

Digital image processing refers to the processing of digital images through the use of 

a computer [5]. While digital image processing has many applications, this study focuses on 

the automated extraction of leaves from a digital image. Digital images of plants are 

processed to locate and extract sub-images of individual leaves. Each individual sub-leaf 

image is then cleaned to remove background objects. Various image processing techniques 

were used throughout the proposed algorithms to accomplish these tasks. Sections 2.2 

through 2.6 provide details and background information for these techniques. 

2.2 Morphological Operations 

Morphological operators are tools that can be used to extract image components [5]. 

These tools are used on binary images to trim, expand, isolate, or connect regions of 

foreground, or white pixels, within an image. Morphological operations in digital image 

processing are based on the concepts of set theory. For the purpose of the morphological 

operations used in this study, the pixels within a binary image are considered to be in a set A. 

A smaller binary image known as a structuring element is also created, and the pixels within 

this smaller image are considered to be in a set B. Structuring elements are generally created 

at the beginning of a morphological operation and can be a variety of shapes and sizes. For 

the purpose of this thesis, it can be assumed that a circular structuring element was used 

unless otherwise noted. Each morphological operation is therefore performed by the 
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convolution of set A and set B with some given set operation. Sections 2.2.1 through 2.2.4 

describe the morphological operations used in this thesis. 

2.2.1 Erosion 

Erosion is the morphological operation used to trim away the edges of a foreground 

region from a binary image. Using set theory, erosion can be defined as the intersection of 

sets A and B. Figure 2.1 displays an example of erosion on a binary image. The dark green 

portion illustrates the foreground region prior to the erosion. The light green portion 

represents the foreground region after the erosion, and the circles represent the structuring 

element used in the erosion. If all of the pixels beneath the structuring element are 

foreground in the original image, the pixel where the structuring element is centered remains 

foreground in the eroded image. If any pixel beneath the structuring element is background in 

the original image, the pixel where the structuring element is centered is set to background in 

the eroded image. As can be seen, the result of erosion is that the foreground region has been 

trimmed around the edges. 

 

 

Figure 2.1: Illustration of Erosion 
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2.2.2 Dilation 

The morphological operation of dilation has the effect of expanding or growing the edges 

of the foreground region of a binary image. In set theory, dilation can be defined as the union 

of sets A and B. Figure 2.2 depicts an example of dilation on a binary image. The dark green 

illustrates the foreground region prior to the dilation. The light green represents the 

foreground region that was added by the dilation, and the circles represent the structuring 

element for the operation. If any pixel under the structuring element is foreground in the 

original image, then the pixel where the structuring element is centered is set to foreground in 

the dilated image. If no pixels under the structuring element are foreground in the original 

image, the pixel where the structuring element is centered is set to background in the dilated 

image. As Figure 2.2 depicts, the result of dilation, which includes both the dark and light 

green areas, is an expansion of the foreground region around the edges. 

 

 

Figure 2.2: Illustration of Dilation 
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2.2.3 Opening 

The morphological operation of opening is the erosion followed by the dilation using the 

same structuring element. The effect of the opening operation, shown in Figure 2.3, is that 

foreground regions smaller than the structuring element are removed. Foreground regions 

larger than the structuring element are disconnected by eliminating corners and any thin 

sections connecting the larger foreground regions. The dark green areas in Figure 2.3 

illustrate the foreground region prior to the opening process while the light green areas 

represent the resulting foreground after the opening process. As can be seen, the small dark 

green rectangle is removed by the erosion process so that there is nothing to expand during 

the dilation process.  The two larger dark green squares, however, would result in smaller 

squares from the erosion process, and then are expanded by the dilation process to contain all 

of their original shape except for the corners.  

 

 

Figure 2.3: Illustration of Opening 
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2.2.4 Closing 

The morphological operation of closing is the dilation followed by the erosion of the 

image using the same structuring element. The effect of the closing operation, illustrated in 

Figure 2.4, is that small holes in foreground regions or small gaps between foreground 

regions are changed to foreground. The dark green areas in Figure 2.4 illustrate the 

foreground regions prior to the closing operation. The result of the closing operation is the 

combination of the dark green regions and light green regions. The result of the dilation 

would be an expanded foreground region. The erosion that takes place on the result of the 

dilation trims the foreground region back to approximately the original shape except for 

regions that were close together or close to the edge of the image in the original binary 

image. 

 

 
Figure 2.4: Illustration of Closing 
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2.3 Gradient Images 

Gradient images are grayscale images that reflect the change in intensity for each 

pixel in the image through analyzing the intensity values of neighboring pixels. Several 

algorithms exist for the production of gradient images; however, for the purposes of this 

study, the Sobel edge detector was used [5]. As can be seen in Figure 2.5, the result of the 

Sobel edge detector is lighter or higher pixel values in the gradient image where the pixel 

values change from dark to light or light to dark rapidly in the grayscale image. Where values 

remain relatively similar in the grayscale image, however, the result of the Sobel edge 

detector is darker or lower pixel intensity values in the gradient image. 

 

Figure 2.5: Left - Grayscale Image, Right - Gradient Image  

 

2.4 Conversion of RGB to Grayscale 

The conversion to a grayscale image from an RGB image involves calculating a single 

grayscale value from the three values found in an RGB image. This value can either be 

calculated by averaging the three values from the RGB image or by using a weighted average 

to give each of the three values a priority. Giving priority to certain values in an RGB image, 

however, implies that some values are more important than others. Because leaves can be 
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found in many different colors, this research uses an unweighted average for grayscale 

conversions. 

2.5 Otsu Thresholding 

To convert a grayscale image into a binary image, a threshold value is selected in 

which all values less than the threshold become a zero, or black, in the binary image and all 

values greater than or equal to the threshold value become a one, or white, in the binary 

image; therefore, the outcome of the binary image is largely dependent upon the value 

selected for the threshold. If the threshold value selected is low, background regions of the 

image will be included as foreground elements in the binary image and if the threshold value 

selected is too high, elements that should be included as foreground objects in the binary 

image will be eliminated as background regions. 

For the purpose of this study, Otsu's thresholding algorithm [6] was used to determine 

the optimal threshold value for converting grayscale images into binary images. Otsu's 

algorithm analyzes the histogram of the grayscale image to determine the value which 

maximizes the between-class variance [5]. The between-class variance is a measure of spread 

for the pixel values both above and below a given threshold value. By maximizing the 

between-class variance, a threshold value is selected that optimizes the separation of 

foreground and background regions within the image. 

2.6 Marker Controlled Watershed Segmentation 

Image segmentation is the process of subdividing an image into its constituent regions or 

objects [5]. Watershed segmentation is a method which produces a segmented image that 

includes connected regions, and as a result, isolates individual objects within an image. 
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Watershed segmentation is based on the concept of visualizing a gradient image in three-

dimensions like a topographical map. The first two dimensions are the coordinates of each 

pixel (x, y), and the third dimension is represented by the value of each pixel. Pixels with 

high values would therefore be mountain tops while pixels with low values would be valleys 

on a topographical map. The watershed segmentation algorithm works by symbolically 

flooding the terrain created by the gradient image with rain. As the rain drops fall, they run 

down the mountains until pools are formed in the valleys. As the pools rise, they begin to run 

into one another. In cases where any two pools meet, the location is marked as a boundary 

between objects. This process continues until all of the terrain is flooded. 

The main problem with watershed segmentation is that it has a tendency to over segment 

an image. To overcome this problem, markers can be set prior to flooding that control the 

amount of segmentation. Basically, markers pre-flood the region image with region 

identifiers. Each region identifier corresponds to a single object within the image. If two 

pools meet during flooding that have the same marker, the pools are allowed to combine and 

no object segmentation occurs. If two pools meet during flooding that have different markers, 

however, the location is marked as a boundary between objects. 
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

The database of plant images in the Irvin Watson Carpenter, Jr. Herbarium, located in the 

Department of Biology at Appalachian State University, was the primary source of plant 

images for this research. These images were manually cropped and edited to remove non-

plant objects and areas with overlapping leaves. Other than removing overlapping leaves, 

however, the plant images were not altered and therefore contain branches, stems, stalks, 

seeds, flowers, and other normal plant parts. Figure 3.2 illustrates an example specimen from 

the I. W. Carpenter, Jr. Herbarium and the manually edited version used in this thesis. The 

three steps, illustrated in Figure 3.1, were performed by the algorithm that extracts possible 

target leaves: 

• Image Preprocessing 

• Detection and Extraction of Individual Leaves 

• Individual Leaf Image Cleaning 
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Figure 3.2: Left - Original Specimen from I. W. Carpenter, Jr. Herbarium, Right - 
Manually Edited Version 

Image 
Preprocessing 

Detection and 
Extraction of 

Individual Leaves 

Individual Leaf 
Image Cleaning 

Figure 3.1: Three Steps of Methodology 
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For the actual implementation of the leaf sub-image extraction and leaf image cleaning 

algorithms proposed in this research, a software tool was developed in Java. The remainder 

of this chapter will present the theoretical implementation of the algorithms, while the 

following chapter will address the actual implementation of the software. 

3.2 Image Preprocessing 

The first step in an automatic leaf extraction algorithm is to locate the individual 

leaves within the plant image. Since digital images vary drastically in size, this could lead to 

unexpected results for different sized images using the same algorithm. In order to unify the 

approach, before attempting to locate leaves within an image, an image is scaled so that the 

largest of either its width or height is exactly 500 pixels. The image's original ratio of width 

to height was not altered in the scaling process. By scaling images to a standard size, more 

accurate results can be obtained by the algorithm designed to detect and extract individual 

leaves. 

3.3 Detection and Extraction of Individual Leaves 

As illustrated by Figure 3.3, the detection and extraction of individual leaves requires 

three steps: segmentation of the plant, segmentation of the leaves, and creation of individual 

leaf images. The first step, segmentation of the plant, is required so that all non-plant 

background objects are disregarded as insignificant. Once the plant is identified, 

segmentation of the leaves is required to identify which portions of the plant are known to be 

leaves. Finally, individual sub-images are created for each of the areas identified as leaves. 
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3.3.1 Segmentation of the Plant 

The logical first step in locating individual leaves within a plant image is to separate 

the plant from the rest of the image.  To accomplish this, the RGB image is converted into a 

grayscale image.  This grayscale image is then slightly blurred with a Gaussian filter to 

minimize the effects of small holes or irregularities in the leaves.  A binary image is then 

created using the grayscale image and Otsu's algorithm [6] to determine the optimal threshold 

value.  Figure 3.4 shows the RGB, grayscale, and binary versions of a sample image.  As can 

be seen in the binary image, the plant becomes the foreground of the image.  At this point the 

background regions in the binary image are deemed to be insignificant and are therefore 

removed, or set to white, in the original RGB image. 

Segmentation 
of the Plant 

Segmentation 
of the Leaves 

Creation of Individual 
Leaf Images 

Figure 3.3: Three Steps of Detection and Extraction of 
Individual Leaves 
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Figure 3.4: Left - RGB Image, Center - Grayscale Image, Right - Binary Image 

 

3.3.2 Segmentation of Leaves 

With the background and all non-plant objects removed, the task of segmenting 

leaves within the image would seem to be as simple as removing all non-leaf parts. The 

process of categorizing a leaf by species, however, is highly dependent upon the shape of the 

leaf. The more common methods, such as the morphological operations generally used in 

such a situation, would not only remove the stems and branches of the image but would also 

alter the shape of the leaves themselves. For a leaf extraction algorithm to be effective for the 

purpose of species classification, the branches, stems, and other non-leaf plant parts have to 

be identified and removed without altering the shape of the leaves. 

A marker controlled watershed segmentation is used to determine the location of all 

possible leaf objects. The internal markers, which represent regions considered to be possible 

leaves, are created by eroding the original binary image with a structuring element of 30 
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pixels in both width and height that is shaped like a geometric cross. The external markers, 

which represent background regions or objects known to not be leaves, are created by 

inverting the original binary image. Prior to flooding the gradient image, the stems and 

branches are dammed up to prevent them from being considered as part of the leaves. 

To dam up the stems and branches, a binary image is created from the gradient image 

using Otsu's method to determine an appropriate threshold. The morphological operation of 

closing is used on this new binary image to fill the insides of the stems and branches. The 

foreground region of the new binary image is then copied back to the original gradient image 

so that all stems and branches are filled with the maximum value. Due to the fact that the 

stems and branches are now filled with the highest possible mountain peaks, the flooding can 

take place without fear of stems and branches being included as parts of a leaf. Figure 3.5 

illustrates the steps used in filling the stems and branches in the gradient image.  

 

Figure 3.5: Left to Right - Original Gradient Image, Binary Image Created from Gradient, 
Binary Image After Closing Operation, Resulting Gradient Image After Stems and Branches 

Filled 
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Figure 3.6 illustrates the state of the image when it is ready to be flooded. The color 

red in Figure 3.6 represents external markers or regions known to not be leaves, and the color 

blue represents internal markers or regions known to be leaf like objects. The color green  in 

Figure 3.6 represents mountain peaks created by filling the stems and branches, and white  

and green areas represent the portions of the image that will be flooded. Figure 3.7 shows the 

results of the watershed segmentation as compared to the original binary image. 

 

 

Figure 3.6: Gradient Image Prior to Flooding 
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Figure 3.7: Left - Original Binary Image, Right - Result of Watershed Segmentation 

 

3.3.3 Creation of Individual Sub-Leaf Images 

Once the watershed flooding was complete, all internal regions are labeled with a 

unique region identifier. The locations and dimensions for each region are then calculated, 

and regions that had less than 961 pixels, i.e., 31 pixels by 31 pixels, are discarded as 

insignificant and not likely the target leaf. Prior to extracting the sub-leaf images, the 

dimensions of each region are padded by ten percent to guarantee that the entire leaf would 

be contained in the resulting image. A binary image is created from each sub-image, and 

those which have ten percent or less foreground pixels are discarded as non-leaf objects. Due 

to the fact that the leaf segmentation algorithm does not maintain the original shape of the 

leaf, each sub-leaf image is created from an exact copy of the pixels from the original RGB 
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image. While this process produces images with leaves unaltered, it also copies stems, 

branches, and parts of other closely located leaves as well. Therefore, each individual sub-

leaf image must be cleaned to remove other partial leaves and non-leaf objects.  

3.4 Individual Leaf Image Cleaning 

When each leaf from the original plant image is extracted into its own sub-image, each 

sub-image must be cleaned to remove stems, branches, other partial leaves, and non-leaf 

objects. The original shape of the leaf, however, must be maintained as well as possible for 

accurate species classification. As depicted in Figure 3.8, the proposed algorithm for cleaning 

an individual leaf image requires the following steps: 

• Determination of Core Leaf Body 

• Examination of Border Regions 

• Removal of Selected Regions 

 

 

 

 

 

 

 

 

Determination of 
Core Leaf Body 

Examination of 
Border Regions 

Removal of 
Selected Regions 

Figure 3.8: Three Steps of Individual Leaf Image Cleaning 
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3.4.1 Determination of Core Leaf Body 

The initial objective of cleaning a leaf image is to determine the portion known to be 

part of the leaf. To accomplish this, a binary image of the original RGB leaf image is created. 

The morphological operation of opening is performed on the binary image to remove all 

small border regions, such as leaf tips and stems, while retaining as much of the leaf's 

original shape as possible. To determine appropriate size for the structuring element used in 

the opening process, the largest of either the width or height of the original image is 

determined, and one-eighth of this size was selected. An additional binary image was then 

created to contain the foreground regions removed by the opening operation. This second 

binary image contains all border regions that are not part of the core leaf body and might 

need to be removed during the cleaning process. Figure 3.9 illustrates an example of an 

original binary image, the binary image containing the core leaf body, and the binary image 

containing all border regions that might need to be removed. 

 

Figure 3.9: Left to Right - Original Binary Image, Core Leaf Body, Possible Regions for 
Removal 

 

3.4.2 Examination of Border Regions 

To determine which of the border regions are not parts of the leaf, each border region is 

examined to determine its level of connectivity. Connectivity is a ratio of the number of 

pixels in a region that are neighbors with a pixel in the core leaf body over the total number 
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of pixels in the region. Regions with a high level of connectivity are likely to be part of the 

leaf while regions with low connectivity, such as stems, are not likely to be part of the leaf. 

Through experimentation, it was determined that regions with greater than 16% connectivity 

are most likely to be part of the leaf. The regions determined to be part of the leaf are then 

erased from the binary image containing possible regions to remove. This results in a binary 

image with only those regions that should be removed. Figure 3.10 illustrates the results of 

this procedure. It should be noted that leaves with numerous long tips did not perform well 

with this algorithm. To accommodate for such leaves, if more than three regions are selected 

to be removed, only the largest of these regions is removed. 

 

 

Figure 3.10: Left to Right - Original Binary Image, Possible Regions to Remove, Regions 
Selected for Removal 

 

3.4.3 Removal of Selected Regions 

To remove the selected regions from the original RGB image, all pixels that are 

foreground in the binary image containing possible regions to remove are set to white in the 

original RGB image. The result is a cleaned RGB leaf image that is suitable for species 

classification.  
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CHAPTER 4: IMPLEMENTATION 

As a part of this thesis, a software tool was developed to implement the proposed 

algorithms discussed in the methodology. The software requires a digital image of a plant 

with a mostly solid light colored background and no overlapping leaves as input. This image 

is first sent through the leaf extraction algorithm which returns a collection of individual sub-

images for each leaf found in the original input image. Each individual leaf image is then 

sent through the leaf cleaning algorithm to remove all non-leaf objects such as stems, 

flowers, and other leaves. The resulting clean leaf images are then saved to the same 

directory as the original input image. 

The programming language chosen for implementation was Java due to its portability on 

a wide range of operating systems; Java, however, does not provide many built in image 

processing tools. Therefore, many of the most basic image processing techniques, such as 

converting an image into a grayscale or binary image, were implemented as part of this 

thesis.  

The remainder of this chapter discusses the implementation of the software and is 

organized as follows. Section 4.1 addresses the GrayscaleImage and BinaryImage wrapper 

classes used extensively throughout the program. Section 4.2 addresses other helper classes 

created to perform specific tasks. Section 4.3 provides an overview of the LeafExtractor class 

which implements the detection and extraction of individual leaf sub-images algorithm. 

Section 4.3 provides an overview of the LeafCleaner class which implements the individual 
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leaf cleaning algorithm. Samples of code are provided throughout this chapter; in addition, 

the entire code is provided on an enclosed CD. 

4.1 GrayscaleImage and BinaryImage Wrapper Classes 

Access to images in Java is provided by the java.awt.image.BufferedImage 

(BufferedImage) class which provides useful methods for working with RGB images. 

Grayscale and binary images, however, have unique value ranges and image processing 

operations. To deal with these requirements, two wrapper classes, GrayscaleImage and 

BinaryImage, were created as a part of this thesis that take as input an RGB BufferedImage 

and provide access to the RGB BufferedImage as if it were a grayscale or binary image. 

4.1.1 Accessing and Setting Pixel Values 

Java’s BufferedImage provides useful methods for working with RGB images such as 

getRGB(int x, int y) and setRGB(int x, int y, int val) which respectively return or set the value 

of the pixel located at the x and y coordinates provided. The problem with these methods is 

that they return or require as input a single thirty-two bit value where each byte represents, 

from most significant to least significant, the pixel’s: alpha value, red value, green value, and 

blue value. A significant amount of bit manipulation is required to access or set the actual 

four values from the single value returned or required by these methods. 

When working with grayscale or binary images, each of the red, green, and blue values 

are equal, and the alpha value never changes. GrayscaleImage and BinaryImage, which store 

the original RGB BufferedImage image, provide methods getPixel(int x, int y) and 

setPixel(int x, int y, int val) which perform all of the required bit manipulation and return or 

accept as input an acceptable grayscale or binary value.  
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Figure 4.1 illustrates the code segment for the GrayscaleImage’s setPixel method. As can 

be seen, a single value is provided as input, and the bit manipulation required to store it as a 

single ARGB value is performed inside the call to BufferedImage’s setRGB method. 

 

Figure 4.1: GrayscaleImage's setPixel Method 

For a binary image, only two values are acceptable: one for white and zero for black. The 

getPixel method in Figure 4.2 uses a helper method RGBToBinary to convert the single 

thirty-two bit value provided by BufferedImage’s getRGB into an acceptable one or zero. 

 

Figure 4.2: BinaryImage's getPixel Method 
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4.1.2 GrayscaleImage and BinaryImage Construction 

A GrayscaleImage can be constructed from an ARGB BufferedImage. Figure 4.3 

illustrates the code required to construct a GrayscaleImage. In the constructor method the 

input BufferedImage is stored as a field image along with the image’s height, width, and 

raster. The method convertFromRGB parses each pixel and uses the methods 

rgbToGrayscale, getRed, getGreen, and getBlue to perform the required bit manipulation and 

calculation of the grayscale value. This value is stored in the BufferedImage image as an 

ARGB value, which then allows the previously mentioned getPixel and setPixel methods to 

respectively return and accept as input simple one byte unsigned grayscale values. 

Similar to GrayscaleImages, BinaryImages store an ARGB BufferedImage in a field 

image. The previously mentioned getPixel and setPixel methods provide access to the ARGB 

BufferedImage using simple one bit binary values. BinaryImages are constructed using a 

GrayscaleImage and a threshold value. All pixels with grayscale values less than the given 

threshold value are set to zero or black, and all pixels with grayscale values greater than or 

equal to the threshold value are set to one or white. The construction of BinaryImages is 

similar to that of GrayscaleImages, presented in Figure 4.3, and differs only in that the 

methods are altered to convert grayscale images into binary images. 
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Figure 4.3: GrayscaleImage Construction 
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4.1.3 Grayscale Image Specific Operations 

Operations specific to grayscale images are also included as methods in the 

GrayscaleImage class. These methods include fillStems, which performs the essential step of 

damming up stems and branches prior to the flooding in the leaf detection and extraction 

algorithm, and sobel, which returns a new GrayscaleImage that is a gradient image created 

using the sobel edge detection algorithm [5]. The method sobel can be seen in Figure 4.4. To 

apply the sobel edge detection, first a new empty GrayscaleImage is created with the same 

width and height of the original GrayscaleImage. Following this step, the sobel value for 

each pixel is determined using the methods getSobelXVal and getSobelYVal. The value is 

then tested to make sure it is not greater than the maximum one byte unsigned grayscale 

value, and if so, the value is set to the maximum. This value is then used as the pixel value 

for the GrayscaleImage sobel. Finally, after all pixels have been processed the new 

GrayscaleImage sobel is returned. 

 

Figure 4.4: GrayscaleImage's sobel Method 
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4.1.4 Binary Image Specific Operations 

Operations specific to binary images are included as methods of the BinaryImage class. 

These methods include morphological operations, regional operations, global operations, and 

comparative operations. The following sections provide examples and code for each of the 

operations that are unique to binary images. 

4.1.3.1 Morphological Operations 

The BinaryImage class contains methods for morphological operations such as erode, 

dilate, open, and close. Figure 4.5 provides the code for the methods erode and erodeTest. 

The erode method returns a new BinaryImage that has been eroded with a circular structuring 

element with the width and height of size. Initially, a new empty BinaryImage is created with 

the same width and height of the original BinaryImage. Each pixel of the original 

BinaryImage is tested with the boolean method erodeTest. The pixels that return true are set 

to zero (black) in the eroded image while those that return false are set to one (white) in the 

eroded image. The other three morphological operations are implemented in similar fashion. 

An erodePlusSign method also exists to erode a binary image with a structuring element 

shaped like a geometric cross and is used to create the internal markers necessary during the 

marker controlled watershed segmentation. 

4.1.3.2 Regional Operations 

A region within a binary image refers to a unique area of foreground that is not connected 

to any other area of foreground. The BinaryImage class contains methods for regional 

operations such as countRegions, which returns the number of unique regions within the 
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image; onlyLargestRegion, which returns a BinaryImage containing only the largest unique 

region; and removeRegion, which removes a unique region from a BinaryImage.  

Figure 4.6 shows the code segment for removeRegion, which takes as parameters a 

BinaryImage, and the x, y coordinates of a foreground pixel in the region. The algorithm 

changes the value of the foreground pixel to background and then recurses on any 

neighboring pixel that is determined to be foreground. The result is that all foreground pixels 

connected to the initial pixel are removed from the BinaryImage. 

 

Figure 4.5: BinaryImage's erode Method 
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Figure 4.6: BinaryImage's removeRegion Method 

 

Figure 4.7 shows the code for BinaryImage’s countRegions method which returns the 

number of unique regions within the image. First, a copy of the original BinaryImage is 

created so that the original image will remain unaltered, and the variable regions, which 

holds the current region count, is initialized to zero. The algorithm then iterates through each 

of the image’s pixels until finding a foreground pixel. Upon finding a foreground pixel the 

regions variable is incremented and the region is removed from the image so that it will not 

be counted twice. Once all of the pixels are iterated through, the count of regions is returned. 
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Figure 4.7: BinaryImage's countRegions Method 

 

4.1.3.3 Global Operations 

BinaryImage’s global operations include methods such as inverse and countWhitePixels. 

The method inverse changes all foreground pixels to background pixels and all the 

background pixels to foreground pixels, therefore creating the inverse of the original image. 

As can be seen in Figure 4.8, the inverse method’s code inverts the value of each pixel. 

 

Figure 4.8: BinaryImage's inverse Method 
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4.1.3.4 Comparative Operations 

Comparative operations in the BinaryImage class perform comparisons between two 

BinaryImage. The diffImage method, illustrated in Figure 4.9, compares the pixels of the 

original BinaryImage to the pixels of another BinaryImage and returns a new BinaryImage 

containing foreground pixels everywhere the two BinaryImages have different values.  

 

 

Figure 4.9: BinaryImage's diffImage Method 

 

BinaryImage’s minus method, shown in Figure 4.10, subtracts the foreground pixels of 

another BinaryImage from the foreground of the original BinaryImage. The result is a new 

BinaryImage with foreground pixels only where the original BinaryImage is foreground and 

the other BinaryImage is background. 
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Figure 4.10: BinaryImage's minus Method 

4.2 Other Classes 

While the GrayscaleImage and BinaryImage classes contain a large amount of 

functionality, several other helper classes had to be created to perform specific tasks. These 

include classes such as OtsuThreshold, which determines an appropriate threshold value for 

converting grayscale images into binary images, and the Watershed class, which performs the 

marker controlled watershed segmentation. The following sections provide details on the 

implementation of these helper classes. 

4.2.1 OtsuThreshold 

The OtsuThreshold class is used to determine an adequate threshold value during the 

process of converting a grayscale image into a binary image. The constructor of 

OtsuThreshold, seen in Figure 4.11, takes an instance of a GrayscaleImage as its only 

parameter. The constructor stores the GrayscaleImage instance as a field gray along with 

other fields for width, height, and number of pixels (pixels). A histogram for the 
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GrayscaleImage is then calculated in the field histData using the calculateHistogram 

method. 

 

Figure 4.11: OtsuThreshold Contruction 

 

Once an instance of OtsuThreshold is created, the determineThreshold method calculates 

and returns the selected threshold value. Figure 4.12 illustrates the code for 

determineThreshold. Each valid unsigned single byte grayscale value is visited to calculate 

the between class variance (varBetween). Along the way the maximum between class 

variance is stored in varMax, and the index of the maximum is stored in threshold. When all 

values are checked, threshold is returned. 
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Figure 4.12: OtsuThreshold's determineThreshold Method 

 

4.2.2 Watershed 

The Watershed class performs the marker controlled watershed segmentation that is used 

in the algorithm for the detection and extraction of individual leaves. During construction of 

a Watershed instance, as can be seen in Figure 4.13, two GrayscaleImage instances are 

required as input. The first GrayscaleImage, which is stored in the field gray, is a gradient 
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image that is interpreted as three-dimensional terrain during the flooding stage of the 

watershed segmentation. The second GrayscaleImage, regionImage, has its pixel values set 

as region values that will be used as the markers for the flooding. Once the necessary fields 

have been set, the flood method is called to start the segmentation. 

 

Figure 4.13: Watershed Construction 

Figure 4.14 provides the implementation of the flood method that performs the 

segmentation algorithm. The water level starts at the lowest possible value of zero. Every 

pixel is then visited, and those that have the value of zero, which represents unlabeled, and 

have a value less than the water level are tested by the method labeledNeighbors. The 

method labeledNeighbors returns the value of a pixel’s neighbors if at least one of the pixel’s 

neighbors is not labeled zero and all of the pixel’s non-zero labeled neighbors share the same 

label. Otherwise, labeledNeighbors returns zero. If labeledNeighbors returns a non-zero 

value, the pixel being tested gets labeled with this value. The number of pixels added at the 

current water level is then incremented. The water level stays the same until no pixel is added 

during an iteration. Following this step, the water level is incremented by one and the process 

continues until the water level goes above the acceptable range.  
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Figure 4.14: Watershed's flood Method 

 

4.3 The LeafExtractor Class 

The LeafExtractor class implements the detection and extraction of individual leaf sub-

images algorithm discussed in the methodology. Figure 4.15 illustrates the code responsible 

for construction of a LeafExtractor instance and outlines the previously mentioned algorithm. 

The input required to create a LeafExtractor instance is the original RGB BufferedImage 

containing the plant photograph. Initially, a GrayscaleImage, gradient image, and 

BinaryImage are created, which are used throughout the rest of the process. The 

removeBackground method converts all pixels that are determined as background in the 

BinaryImage to white in the original RGB BufferedImage. The stems and branches are then 
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filled which is a required step prior to the watershed segmentation. The watershed 

segmentation is then performed which detects all leaves or large objects within the image. 

The LeafRegion class stores the top, bottom, left, and right bounds of a possible leaf or large 

object, and the call to flood.identifyRegions() returns a collection of LeafRegion instances for 

all objects detected. The createSubLeafImages method analyzes each object detected by the 

program, removes those that it determines not to be leaves, and creates a sub-image for all 

probable leaves. Finally, each leaf image is padded by five pixels on each side to ensure that 

the leaf is not located on the border of the image. A call to LeafExtractor’s getLeafImages 

method will return a collection of all individual leaf sub-images. 

 

Figure 4.15: LeafExtractor Construction 
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4.4 The LeafCleaner Class 

The LeafCleaner class implements the individual leaf image cleaning algorithm discussed 

in the methodology which includes the following steps: determination of the core leaf body, 

examination of border regions, and removal of selected regions. All three of these steps are 

implemented in the method cleanLeaf; however, discussion of each step will be broken down 

for better clarity. Figure 4.16 provides the code that implements the determination of the core 

leaf body.  

To obtain the core leaf body, a BinaryImage bin is created. A copy of this BinaryImage, 

binCopy, is made such that the original is left unaltered, and the copy has the morphological 

operation of closing performed on it, leaving only the foreground known to be part of the leaf 

body. Due to the fact that individual leaf sub-images vary in size, the size of the structuring 

element has to be proportional to the size of the image. Through experimentation, it was 

determined that a structuring element one-eighth of the largest width or height of the image 

provided the best results.  

 

Figure 4.16: LeafCleaner's cleanLeaf Method Part 1 
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Figure 4.17 illustrates the examination of border regions step of the leaf cleaning 

algorithm. To obtain a BinaryImage containing only the border regions, the regions removed 

during the open operation, BinaryImage’s diffImage method is used to obtain a new 

BinaryImage called diff that contains the foreground regions present in bin but not present in 

binCopy. Small or insignificant regions that contain less than ten pixels are then removed for 

better efficiency during the examination process. A copy of the border regions BinaryImage 

is then created that will store the regions selected for removal later. Next, an array of 

BinaryImages is created that stores a unique BinaryImage instance for each region. Each 

BinaryImage in this collection contains as foreground only one unique region. Each region is 

then examined to determine what percentage of pixels in the region border a foreground pixel 

in the core leaf body. This value is referred to as a region’s connectivity. Regions that have a 

connectivity of greater than 16% are determined to be part of the leaf and are removed from 

the toRemove instance. 
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Figure 4.17: LeafCleaner's cleanLeaf Method Part 2 

 

Through experimentation it was determined that when more than three regions are 

selected to be removed, several of the removed regions are in fact part of the leaf. For this 

reason, when more than three regions are selected to be removed, only the region with the 

lowest connectivity is removed. Figure 4.18 provides the code for the removal of selected 

regions step of the leaf cleaning algorithm. First, all of the regions are visited to determine 
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which region has the lowest connectivity. Then, if the toRemove instance has more than three 

regions, all regions except for the region with the lowest connectivity is removed from 

toRemove. The regions that are selected to be removed are then dilated with a structuring 

element of size three which has the effect of expanding each foreground region by one pixel 

on each side. This step is necessary to ensure that all of the selected regions will be removed 

from the original image. Finally, all of the regions selected for removal are removed from the 

original RGB image resulting in a cleaned leaf image. 

 

Figure 4.18: LeafCleaner's cleanLeaf Method Part 3 
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CHAPTER 5: RESULTS 

Twenty-one plant images obtained from the Irvin Watson Carpenter, Jr. Herbarium were 

selected to test the algorithms described in chapters 3 and 4. These images contained a total 

of 84 leaves with an average of 4 leaves per plant image. The minimum number of leaves in 

a plant image was 1, and the maximum number of leaves in a plant image was 7. The 

remainder of this chapter will separately analyze the effectiveness of the detection and 

extraction of individual leaves algorithm and the individual leaf cleaning algorithm. The last 

section analyzes the effectiveness of the overall approach. 

5.1 Detection and Extraction of Individual Leaves 

The detection and extraction of individual leaves algorithm accurately extracted the 

correct leaf sub-images for all 21 plant images. Figure 5.1 provides an example of an input 

image and the individual leaf sub-images that were produced from this algorithm. The results 

of the detection and extraction of individual leaves algorithm for all of the 21 plant images 

used in this thesis are provided in Appendix A. 
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Figure 5.1: Left - Input Image, Right - Individual Leaf Sub-images Produced by the 
Detection and Extraction of Individual Leaves Algorithm 

 

 The marker controlled watershed segmentation algorithm was successful in isolating 

only leaf objects in all but one of the plant images. The image in which the watershed 

algorithm failed to correctly isolate only the leaves is displayed in Figure 5.2. This plant 

contains branches that are close to being as large as the leaves themselves. The marker-

controlled watershed segmentation algorithm detected five possible leaf objects in this image, 

the three leaves and two large branch sections. The algorithm designed to rule out non-leaf 

objects, however, successfully removed the two large branch regions that the marker-

controlled watershed segmentation algorithm identified as possible leaf objects. 
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Figure 5.2: Plant Image Where Non-leaf Objects Were Identified as Possible Leaves by 
Watershed 

5.2 Cleaning Leaf Images 

To analyze the results of the leaf image cleaning algorithm, the original sub-images, that 

were produced by the leaf detection and extraction algorithm, were compared to the sub-

images that were produced by the leaf cleaning algorithm. During this comparison, leaf 

images were marked with the following characteristics: non-leaf object(s) removed (OR), 

non-leaf object(s) not removed (ONR), and leaf part(s) removed (LPR). Figure 5.3 illustrates 

examples of these characteristics. 
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Figure 5.3: Top Row – OR, Center Row – ONR, Bottom Row – LPR 

 

Forty-six out of the total 84 leaf images (57.76%) were changed in some way during the 

cleaning process while 38 (45.24%) remained unaltered. The number of leaf images where a 

non-leaf object was removed was 43 which accounts for 51.19% of the total 84 leaf images 

and 93.48% of the 46 images that received alterations during the cleaning process. Twenty-

three of the leaf images still contained a non-leaf object after the cleaning process which 

accounts for 27.38% of the total 84 leaves and 50% of the 46 images altered by the cleaning 

process. Only 9 or 10.71% of the total 84 leaf images had some leaf part removed which 

accounts for 19.57% of the 46 leaves that were changed during the cleaning process. 

To measure the overall success of the leaf cleaning algorithm, each cleaned leaf image 

was categorized into one of the following categories:  
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• The basic shape of the leaf was unaltered and all non-leaf objects were removed. 

(Perfect) 

•  The basic leaf shape was slightly altered and/or one or more very small non-leaf 

objects were not removed. (Acceptable)  

• The basic leaf shape was altered significantly and/or one or more significant non-

leaf objects were not removed. (Failure)  

As Figure 5.4 illustrates, 54 (64.29%) of the total 84 leaf images were categorized as 

perfect, while the remaining 30 (35.71%) were categorized as acceptable. None of the leaves 

were categorized as failures. It should be noted that 20 (23.81%) of the total 84 leaf images 

were not altered in any way during the cleaning process and were still categorized as perfect. 

The remaining 18 unaltered leaf images where categorized as acceptable. The results of the 

leaf image cleaning algorithm for all of the 84 leaf images used in this thesis are provided in 

Appendix B. 

 

Figure 5.4: Leaf Image Cleaning Algorithm Results 
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5.3 Overall Algorithm Results 

The overall goal for the leaf extraction algorithm was to provide an automated solution 

that would be capable of producing leaf images that could successfully be used in species 

classification. For a leaf image to be successfully used in species classification, a target leaf 

should be provided that retains the unique shape of the individual leaf while all non-leaf 

objects are removed. To determine how successful the leaf extraction algorithm was at 

achieving this goal, each of the 21 plant images were divided into two categories, successful 

or unsuccessful. Successful plant images were those that resulted in at least 1 leaf categorized 

as perfect by the leaf cleaning algorithm while unsuccessful plant images were those that 

resulted in no leaves categorized as perfect. Of the total 21 plant images, 18 (86%) were 

determined to be successful while only 3 (14%) were determined to be unsuccessful. It 

should also be noted that 8 (38%) of the total 21 plant images resulted in all leaves 

categorized as perfect by the leaf cleaning algorithm and 16 (76%) had at least half of their 

leaves categorized as perfect. 
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CHAPTER 6: CONCLUSIONS 

6.1 Outcomes 

The algorithm designed to detect and extract individual leaf images successfully detected 

100% of the leaves within the 21 plant images and extracted no non-leaf objects. This 

algorithm also produced leaf images categorized as perfect by the leaf cleaning algorithm for 

23.81% of the leaves. This algorithm, however, requires that none of the leaves are 

overlapping, and if overlapping leaves are present within an image the algorithm generally 

extracts a single image for the whole section.  

The 21 plant images used in this research contained only plants with a near white 

background. When provided with images containing complicated backgrounds such as grass, 

the sky, or buildings, the extraction algorithm was far less effective. When working with 

images containing complicated backgrounds, Otsu's thresholding algorithm produced a 

binary image where parts of the background with lighter values were determined to be 

foreground and parts of the plants with darker values were determined to be background.  

The algorithm designed to clean the leaf images produced perfect leaves 64.29% of the 

time, acceptable leaves 35.71% of the time, and no failed leaves. The majority of leaves 

determined to be acceptable contained only very small stems and would most likely produce 

satisfactory results if used in species classification. The task of cleaning leaf images provides 

a challenging problem in that non-leaf objects often contain the same characteristics as leaf 

tips or points. A threshold must be determined to remove as many of the non-leaf objects as 
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possible without removing the leaf tips or points. The proposed algorithm resulted in only 

10.71% of leaves where tips or points were removed and 51.19% of leaves where some non-

leaf object was removed. When compared to only those leaves that received alterations 

during the cleaning process, these values are 19.57% of leaves where tips or points were 

removed and 93.48% of leaves where some non-leaf object was removed. 

When combining the extraction algorithm and the cleaning algorithm, the overall 

algorithm produced successful results for 85.71% of the plant images tested. Of the 

remaining 14.29% that were determined to be unsuccessful due to no perfect leaves, at least 

one leaf image was acceptable enough to get promising results if used in species 

classification.  

6.2 Future Work 

The proposed algorithms do not provide a solution capable of fully automated plant 

species classification from a plant image. They do, however, provide several successful 

solutions to some of the tasks necessary for such a system. For a solution capable of fully 

automated plant species classification to become a reality, portions of the proposed 

algorithms need to be improved or have functionality added, and the tasks not implemented 

by the proposed algorithms need to be addressed. 

The images used in this research are plants without a background. The leaf detection and 

extraction algorithm does not provide adequate results for images with complicated 

backgrounds. For images containing complicated backgrounds, a new algorithm could be 

designed to separate the plant from the background before it is provided to the leaf detection 

and extraction algorithm. 
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When taking photographs of leaves, it is usually very difficult to capture an image where 

none of the leaves are overlapping. In the case of overlapping leaves, there is usually at least 

one whole leaf on top with other partially occluded leaves behind it. An new algorithm could 

be developed to remove the partially occluded leaves and retain the original shape of the 

whole leaf. Such an algorithm could be added to the cleaning algorithm proposed to provide 

an adequate solution to the problem. 

The cleaning algorithm proposed provides adequate results for species classification by 

retaining the original shape of most leaves while removing the majority of non-leaf objects. 

Species classification relies heavily upon the shape of the leaf, but the proposed algorithm is 

not perfect. More research in this area could provide better solutions to the problem which 

would directly result in better results from species classification. 

The proposed algorithm does not provide a way to automatically detect the best leaf for 

species classification. For a fully automated system, this is an essential task that needs an 

adequate solution. One possibility is to try all leaves classified as perfect within an image to 

see if the recognition algorithm agrees on a species. While a fully automated system for plant 

species classification is not provided by this research, this research provides sufficient 

evidence that an adequate solution is possible. 
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APPENDIX A 

Results of Leaf Detection and Extraction Algorithm 
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Figure A.1: Left – Original Image, Right – Extracted Leaf Sub-images 

 

Figure A.2: Left – Original Image, Right – Extracted Leaf Sub-images 
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